📦 3.3.0
This commit is contained in:
768
svg-only/dist/324.index.js
vendored
Normal file
768
svg-only/dist/324.index.js
vendored
Normal file
@@ -0,0 +1,768 @@
|
||||
"use strict";
|
||||
exports.id = 324;
|
||||
exports.ids = [324];
|
||||
exports.modules = {
|
||||
|
||||
/***/ 324:
|
||||
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
|
||||
|
||||
|
||||
// EXPORTS
|
||||
__webpack_require__.d(__webpack_exports__, {
|
||||
generateContributionSnake: () => (/* binding */ generateContributionSnake)
|
||||
});
|
||||
|
||||
;// CONCATENATED MODULE: ../github-user-contribution/index.ts
|
||||
/**
|
||||
* get the contribution grid from a github user page
|
||||
*
|
||||
* use options.from=YYYY-MM-DD options.to=YYYY-MM-DD to get the contribution grid for a specific time range
|
||||
* or year=2019 as an alias for from=2019-01-01 to=2019-12-31
|
||||
*
|
||||
* otherwise return use the time range from today minus one year to today ( as seen in github profile page )
|
||||
*
|
||||
* @param userName github user name
|
||||
* @param options
|
||||
*
|
||||
* @example
|
||||
* getGithubUserContribution("platane", { from: "2019-01-01", to: "2019-12-31" })
|
||||
* getGithubUserContribution("platane", { year: 2019 })
|
||||
*
|
||||
*/
|
||||
const getGithubUserContribution = async (userName, o) => {
|
||||
const query = /* GraphQL */ `
|
||||
query ($login: String!) {
|
||||
user(login: $login) {
|
||||
contributionsCollection {
|
||||
contributionCalendar {
|
||||
weeks {
|
||||
contributionDays {
|
||||
contributionCount
|
||||
contributionLevel
|
||||
weekday
|
||||
date
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
`;
|
||||
const variables = { login: userName };
|
||||
const res = await fetch("https://api.github.com/graphql", {
|
||||
headers: {
|
||||
Authorization: `bearer ${o.githubToken}`,
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": "me@platane.me",
|
||||
},
|
||||
method: "POST",
|
||||
body: JSON.stringify({ variables, query }),
|
||||
});
|
||||
if (!res.ok)
|
||||
throw new Error(await res.text().catch(() => res.statusText));
|
||||
const { data, errors } = (await res.json());
|
||||
if (errors?.[0])
|
||||
throw errors[0];
|
||||
return data.user.contributionsCollection.contributionCalendar.weeks.flatMap(({ contributionDays }, x) => contributionDays.map((d) => ({
|
||||
x,
|
||||
y: d.weekday,
|
||||
date: d.date,
|
||||
count: d.contributionCount,
|
||||
level: (d.contributionLevel === "FOURTH_QUARTILE" && 4) ||
|
||||
(d.contributionLevel === "THIRD_QUARTILE" && 3) ||
|
||||
(d.contributionLevel === "SECOND_QUARTILE" && 2) ||
|
||||
(d.contributionLevel === "FIRST_QUARTILE" && 1) ||
|
||||
0,
|
||||
})));
|
||||
};
|
||||
|
||||
// EXTERNAL MODULE: ../types/grid.ts
|
||||
var types_grid = __webpack_require__(105);
|
||||
;// CONCATENATED MODULE: ./userContributionToGrid.ts
|
||||
|
||||
const userContributionToGrid = (cells) => {
|
||||
const width = Math.max(0, ...cells.map((c) => c.x)) + 1;
|
||||
const height = Math.max(0, ...cells.map((c) => c.y)) + 1;
|
||||
const grid = (0,types_grid/* createEmptyGrid */.Kb)(width, height);
|
||||
for (const c of cells) {
|
||||
if (c.level > 0)
|
||||
(0,types_grid/* setColor */.wW)(grid, c.x, c.y, c.level);
|
||||
else
|
||||
(0,types_grid/* setColorEmpty */.l$)(grid, c.x, c.y);
|
||||
}
|
||||
return grid;
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../types/point.ts
|
||||
const around4 = [
|
||||
{ x: 1, y: 0 },
|
||||
{ x: 0, y: -1 },
|
||||
{ x: -1, y: 0 },
|
||||
{ x: 0, y: 1 },
|
||||
];
|
||||
const pointEquals = (a, b) => a.x === b.x && a.y === b.y;
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/outside.ts
|
||||
|
||||
|
||||
const createOutside = (grid, color = 0) => {
|
||||
const outside = (0,types_grid/* createEmptyGrid */.Kb)(grid.width, grid.height);
|
||||
for (let x = outside.width; x--;)
|
||||
for (let y = outside.height; y--;)
|
||||
(0,types_grid/* setColor */.wW)(outside, x, y, 1);
|
||||
fillOutside(outside, grid, color);
|
||||
return outside;
|
||||
};
|
||||
const fillOutside = (outside, grid, color = 0) => {
|
||||
let changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
for (let x = outside.width; x--;)
|
||||
for (let y = outside.height; y--;)
|
||||
if ((0,types_grid/* getColor */.oU)(grid, x, y) <= color &&
|
||||
!isOutside(outside, x, y) &&
|
||||
around4.some((a) => isOutside(outside, x + a.x, y + a.y))) {
|
||||
changed = true;
|
||||
(0,types_grid/* setColorEmpty */.l$)(outside, x, y);
|
||||
}
|
||||
}
|
||||
return outside;
|
||||
};
|
||||
const isOutside = (outside, x, y) => !(0,types_grid/* isInside */.FK)(outside, x, y) || (0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(outside, x, y));
|
||||
|
||||
// EXTERNAL MODULE: ../types/snake.ts
|
||||
var types_snake = __webpack_require__(777);
|
||||
;// CONCATENATED MODULE: ../solver/utils/sortPush.ts
|
||||
const sortPush = (arr, x, sortFn) => {
|
||||
let a = 0;
|
||||
let b = arr.length;
|
||||
if (arr.length === 0 || sortFn(x, arr[a]) <= 0) {
|
||||
arr.unshift(x);
|
||||
return;
|
||||
}
|
||||
while (b - a > 1) {
|
||||
const e = Math.ceil((a + b) / 2);
|
||||
const s = sortFn(x, arr[e]);
|
||||
if (s === 0)
|
||||
a = b = e;
|
||||
else if (s > 0)
|
||||
a = e;
|
||||
else
|
||||
b = e;
|
||||
}
|
||||
const e = Math.ceil((a + b) / 2);
|
||||
arr.splice(e, 0, x);
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/tunnel.ts
|
||||
|
||||
|
||||
/**
|
||||
* get the sequence of snake to cross the tunnel
|
||||
*/
|
||||
const getTunnelPath = (snake0, tunnel) => {
|
||||
const chain = [];
|
||||
let snake = snake0;
|
||||
for (let i = 1; i < tunnel.length; i++) {
|
||||
const dx = tunnel[i].x - (0,types_snake/* getHeadX */.tN)(snake);
|
||||
const dy = tunnel[i].y - (0,types_snake/* getHeadY */.Ap)(snake);
|
||||
snake = (0,types_snake/* nextSnake */.Sc)(snake, dx, dy);
|
||||
chain.unshift(snake);
|
||||
}
|
||||
return chain;
|
||||
};
|
||||
/**
|
||||
* assuming the grid change and the colors got deleted, update the tunnel
|
||||
*/
|
||||
const updateTunnel = (grid, tunnel, toDelete) => {
|
||||
while (tunnel.length) {
|
||||
const { x, y } = tunnel[0];
|
||||
if (isEmptySafe(grid, x, y) ||
|
||||
toDelete.some((p) => p.x === x && p.y === y)) {
|
||||
tunnel.shift();
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
while (tunnel.length) {
|
||||
const { x, y } = tunnel[tunnel.length - 1];
|
||||
if (isEmptySafe(grid, x, y) ||
|
||||
toDelete.some((p) => p.x === x && p.y === y)) {
|
||||
tunnel.pop();
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
};
|
||||
const isEmptySafe = (grid, x, y) => !(0,types_grid/* isInside */.FK)(grid, x, y) || (0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(grid, x, y));
|
||||
/**
|
||||
* remove empty cell from start
|
||||
*/
|
||||
const trimTunnelStart = (grid, tunnel) => {
|
||||
while (tunnel.length) {
|
||||
const { x, y } = tunnel[0];
|
||||
if (isEmptySafe(grid, x, y))
|
||||
tunnel.shift();
|
||||
else
|
||||
break;
|
||||
}
|
||||
};
|
||||
/**
|
||||
* remove empty cell from end
|
||||
*/
|
||||
const trimTunnelEnd = (grid, tunnel) => {
|
||||
while (tunnel.length) {
|
||||
const i = tunnel.length - 1;
|
||||
const { x, y } = tunnel[i];
|
||||
if (isEmptySafe(grid, x, y) ||
|
||||
tunnel.findIndex((p) => p.x === x && p.y === y) < i)
|
||||
tunnel.pop();
|
||||
else
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/getBestTunnel.ts
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const getColorSafe = (grid, x, y) => (0,types_grid/* isInside */.FK)(grid, x, y) ? (0,types_grid/* getColor */.oU)(grid, x, y) : 0;
|
||||
const setEmptySafe = (grid, x, y) => {
|
||||
if ((0,types_grid/* isInside */.FK)(grid, x, y))
|
||||
(0,types_grid/* setColorEmpty */.l$)(grid, x, y);
|
||||
};
|
||||
const unwrap = (m) => !m
|
||||
? []
|
||||
: [...unwrap(m.parent), { x: (0,types_snake/* getHeadX */.tN)(m.snake), y: (0,types_snake/* getHeadY */.Ap)(m.snake) }];
|
||||
/**
|
||||
* returns the path to reach the outside which contains the least color cell
|
||||
*/
|
||||
const getSnakeEscapePath = (grid, outside, snake0, color) => {
|
||||
const openList = [{ snake: snake0, w: 0 }];
|
||||
const closeList = [];
|
||||
while (openList[0]) {
|
||||
const o = openList.shift();
|
||||
const x = (0,types_snake/* getHeadX */.tN)(o.snake);
|
||||
const y = (0,types_snake/* getHeadY */.Ap)(o.snake);
|
||||
if (isOutside(outside, x, y))
|
||||
return unwrap(o);
|
||||
for (const a of around4) {
|
||||
const c = getColorSafe(grid, x + a.x, y + a.y);
|
||||
if (c <= color && !(0,types_snake/* snakeWillSelfCollide */.J)(o.snake, a.x, a.y)) {
|
||||
const snake = (0,types_snake/* nextSnake */.Sc)(o.snake, a.x, a.y);
|
||||
if (!closeList.some((s0) => (0,types_snake/* snakeEquals */.sW)(s0, snake))) {
|
||||
const w = o.w + 1 + +(c === color) * 1000;
|
||||
sortPush(openList, { snake, w, parent: o }, (a, b) => a.w - b.w);
|
||||
closeList.push(snake);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return null;
|
||||
};
|
||||
/**
|
||||
* compute the best tunnel to get to the cell and back to the outside ( best = less usage of <color> )
|
||||
*
|
||||
* notice that it's one of the best tunnels, more with the same score could exist
|
||||
*/
|
||||
const getBestTunnel = (grid, outside, x, y, color, snakeN) => {
|
||||
const c = { x, y };
|
||||
const snake0 = (0,types_snake/* createSnakeFromCells */.yS)(Array.from({ length: snakeN }, () => c));
|
||||
const one = getSnakeEscapePath(grid, outside, snake0, color);
|
||||
if (!one)
|
||||
return null;
|
||||
// get the position of the snake if it was going to leave the x,y cell
|
||||
const snakeICells = one.slice(0, snakeN);
|
||||
while (snakeICells.length < snakeN)
|
||||
snakeICells.push(snakeICells[snakeICells.length - 1]);
|
||||
const snakeI = (0,types_snake/* createSnakeFromCells */.yS)(snakeICells);
|
||||
// remove from the grid the colors that one eat
|
||||
const gridI = (0,types_grid/* copyGrid */.mi)(grid);
|
||||
for (const { x, y } of one)
|
||||
setEmptySafe(gridI, x, y);
|
||||
const two = getSnakeEscapePath(gridI, outside, snakeI, color);
|
||||
if (!two)
|
||||
return null;
|
||||
one.shift();
|
||||
one.reverse();
|
||||
one.push(...two);
|
||||
trimTunnelStart(grid, one);
|
||||
trimTunnelEnd(grid, one);
|
||||
return one;
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/getPathTo.ts
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* starting from snake0, get to the cell x,y
|
||||
* return the snake chain (reversed)
|
||||
*/
|
||||
const getPathTo = (grid, snake0, x, y) => {
|
||||
const openList = [{ snake: snake0, w: 0 }];
|
||||
const closeList = [];
|
||||
while (openList.length) {
|
||||
const c = openList.shift();
|
||||
const cx = (0,types_snake/* getHeadX */.tN)(c.snake);
|
||||
const cy = (0,types_snake/* getHeadY */.Ap)(c.snake);
|
||||
for (let i = 0; i < around4.length; i++) {
|
||||
const { x: dx, y: dy } = around4[i];
|
||||
const nx = cx + dx;
|
||||
const ny = cy + dy;
|
||||
if (nx === x && ny === y) {
|
||||
// unwrap
|
||||
const path = [(0,types_snake/* nextSnake */.Sc)(c.snake, dx, dy)];
|
||||
let e = c;
|
||||
while (e.parent) {
|
||||
path.push(e.snake);
|
||||
e = e.parent;
|
||||
}
|
||||
return path;
|
||||
}
|
||||
if ((0,types_grid/* isInsideLarge */.Yd)(grid, 2, nx, ny) &&
|
||||
!(0,types_snake/* snakeWillSelfCollide */.J)(c.snake, dx, dy) &&
|
||||
(!(0,types_grid/* isInside */.FK)(grid, nx, ny) || (0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(grid, nx, ny)))) {
|
||||
const nsnake = (0,types_snake/* nextSnake */.Sc)(c.snake, dx, dy);
|
||||
if (!closeList.some((s) => (0,types_snake/* snakeEquals */.sW)(nsnake, s))) {
|
||||
const w = c.w + 1;
|
||||
const h = Math.abs(nx - x) + Math.abs(ny - y);
|
||||
const f = w + h;
|
||||
const o = { snake: nsnake, parent: c, w, h, f };
|
||||
sortPush(openList, o, (a, b) => a.f - b.f);
|
||||
closeList.push(nsnake);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/clearResidualColoredLayer.ts
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const clearResidualColoredLayer = (grid, outside, snake0, color) => {
|
||||
const snakeN = (0,types_snake/* getSnakeLength */.T$)(snake0);
|
||||
const tunnels = getTunnellablePoints(grid, outside, snakeN, color);
|
||||
// sort
|
||||
tunnels.sort((a, b) => b.priority - a.priority);
|
||||
const chain = [snake0];
|
||||
while (tunnels.length) {
|
||||
// get the best next tunnel
|
||||
let t = getNextTunnel(tunnels, chain[0]);
|
||||
// goes to the start of the tunnel
|
||||
chain.unshift(...getPathTo(grid, chain[0], t[0].x, t[0].y));
|
||||
// goes to the end of the tunnel
|
||||
chain.unshift(...getTunnelPath(chain[0], t));
|
||||
// update grid
|
||||
for (const { x, y } of t)
|
||||
clearResidualColoredLayer_setEmptySafe(grid, x, y);
|
||||
// update outside
|
||||
fillOutside(outside, grid);
|
||||
// update tunnels
|
||||
for (let i = tunnels.length; i--;)
|
||||
if ((0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(grid, tunnels[i].x, tunnels[i].y)))
|
||||
tunnels.splice(i, 1);
|
||||
else {
|
||||
const t = tunnels[i];
|
||||
const tunnel = getBestTunnel(grid, outside, t.x, t.y, color, snakeN);
|
||||
if (!tunnel)
|
||||
tunnels.splice(i, 1);
|
||||
else {
|
||||
t.tunnel = tunnel;
|
||||
t.priority = getPriority(grid, color, tunnel);
|
||||
}
|
||||
}
|
||||
// re-sort
|
||||
tunnels.sort((a, b) => b.priority - a.priority);
|
||||
}
|
||||
chain.pop();
|
||||
return chain;
|
||||
};
|
||||
const getNextTunnel = (ts, snake) => {
|
||||
let minDistance = Infinity;
|
||||
let closestTunnel = null;
|
||||
const x = (0,types_snake/* getHeadX */.tN)(snake);
|
||||
const y = (0,types_snake/* getHeadY */.Ap)(snake);
|
||||
const priority = ts[0].priority;
|
||||
for (let i = 0; ts[i] && ts[i].priority === priority; i++) {
|
||||
const t = ts[i].tunnel;
|
||||
const d = distanceSq(t[0].x, t[0].y, x, y);
|
||||
if (d < minDistance) {
|
||||
minDistance = d;
|
||||
closestTunnel = t;
|
||||
}
|
||||
}
|
||||
return closestTunnel;
|
||||
};
|
||||
/**
|
||||
* get all the tunnels for all the cells accessible
|
||||
*/
|
||||
const getTunnellablePoints = (grid, outside, snakeN, color) => {
|
||||
const points = [];
|
||||
for (let x = grid.width; x--;)
|
||||
for (let y = grid.height; y--;) {
|
||||
const c = (0,types_grid/* getColor */.oU)(grid, x, y);
|
||||
if (!(0,types_grid/* isEmpty */.Im)(c) && c < color) {
|
||||
const tunnel = getBestTunnel(grid, outside, x, y, color, snakeN);
|
||||
if (tunnel) {
|
||||
const priority = getPriority(grid, color, tunnel);
|
||||
points.push({ x, y, priority, tunnel });
|
||||
}
|
||||
}
|
||||
}
|
||||
return points;
|
||||
};
|
||||
/**
|
||||
* get the score of the tunnel
|
||||
* prioritize tunnel with maximum color smaller than <color> and with minimum <color>
|
||||
* with some tweaks
|
||||
*/
|
||||
const getPriority = (grid, color, tunnel) => {
|
||||
let nColor = 0;
|
||||
let nLess = 0;
|
||||
for (let i = 0; i < tunnel.length; i++) {
|
||||
const { x, y } = tunnel[i];
|
||||
const c = clearResidualColoredLayer_getColorSafe(grid, x, y);
|
||||
if (!(0,types_grid/* isEmpty */.Im)(c) && i === tunnel.findIndex((p) => p.x === x && p.y === y)) {
|
||||
if (c === color)
|
||||
nColor += 1;
|
||||
else
|
||||
nLess += color - c;
|
||||
}
|
||||
}
|
||||
if (nColor === 0)
|
||||
return 99999;
|
||||
return nLess / nColor;
|
||||
};
|
||||
const distanceSq = (ax, ay, bx, by) => (ax - bx) ** 2 + (ay - by) ** 2;
|
||||
const clearResidualColoredLayer_getColorSafe = (grid, x, y) => (0,types_grid/* isInside */.FK)(grid, x, y) ? (0,types_grid/* getColor */.oU)(grid, x, y) : 0;
|
||||
const clearResidualColoredLayer_setEmptySafe = (grid, x, y) => {
|
||||
if ((0,types_grid/* isInside */.FK)(grid, x, y))
|
||||
(0,types_grid/* setColorEmpty */.l$)(grid, x, y);
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/clearCleanColoredLayer.ts
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const clearCleanColoredLayer = (grid, outside, snake0, color) => {
|
||||
const snakeN = (0,types_snake/* getSnakeLength */.T$)(snake0);
|
||||
const points = clearCleanColoredLayer_getTunnellablePoints(grid, outside, snakeN, color);
|
||||
const chain = [snake0];
|
||||
while (points.length) {
|
||||
const path = getPathToNextPoint(grid, chain[0], color, points);
|
||||
path.pop();
|
||||
for (const snake of path)
|
||||
clearCleanColoredLayer_setEmptySafe(grid, (0,types_snake/* getHeadX */.tN)(snake), (0,types_snake/* getHeadY */.Ap)(snake));
|
||||
chain.unshift(...path);
|
||||
}
|
||||
fillOutside(outside, grid);
|
||||
chain.pop();
|
||||
return chain;
|
||||
};
|
||||
const clearCleanColoredLayer_unwrap = (m) => !m ? [] : [m.snake, ...clearCleanColoredLayer_unwrap(m.parent)];
|
||||
const getPathToNextPoint = (grid, snake0, color, points) => {
|
||||
const closeList = [];
|
||||
const openList = [{ snake: snake0 }];
|
||||
while (openList.length) {
|
||||
const o = openList.shift();
|
||||
const x = (0,types_snake/* getHeadX */.tN)(o.snake);
|
||||
const y = (0,types_snake/* getHeadY */.Ap)(o.snake);
|
||||
const i = points.findIndex((p) => p.x === x && p.y === y);
|
||||
if (i >= 0) {
|
||||
points.splice(i, 1);
|
||||
return clearCleanColoredLayer_unwrap(o);
|
||||
}
|
||||
for (const { x: dx, y: dy } of around4) {
|
||||
if ((0,types_grid/* isInsideLarge */.Yd)(grid, 2, x + dx, y + dy) &&
|
||||
!(0,types_snake/* snakeWillSelfCollide */.J)(o.snake, dx, dy) &&
|
||||
clearCleanColoredLayer_getColorSafe(grid, x + dx, y + dy) <= color) {
|
||||
const snake = (0,types_snake/* nextSnake */.Sc)(o.snake, dx, dy);
|
||||
if (!closeList.some((s0) => (0,types_snake/* snakeEquals */.sW)(s0, snake))) {
|
||||
closeList.push(snake);
|
||||
openList.push({ snake, parent: o });
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
/**
|
||||
* get all cells that are tunnellable
|
||||
*/
|
||||
const clearCleanColoredLayer_getTunnellablePoints = (grid, outside, snakeN, color) => {
|
||||
const points = [];
|
||||
for (let x = grid.width; x--;)
|
||||
for (let y = grid.height; y--;) {
|
||||
const c = (0,types_grid/* getColor */.oU)(grid, x, y);
|
||||
if (!(0,types_grid/* isEmpty */.Im)(c) &&
|
||||
c <= color &&
|
||||
!points.some((p) => p.x === x && p.y === y)) {
|
||||
const tunnel = getBestTunnel(grid, outside, x, y, color, snakeN);
|
||||
if (tunnel)
|
||||
for (const p of tunnel)
|
||||
if (!clearCleanColoredLayer_isEmptySafe(grid, p.x, p.y))
|
||||
points.push(p);
|
||||
}
|
||||
}
|
||||
return points;
|
||||
};
|
||||
const clearCleanColoredLayer_getColorSafe = (grid, x, y) => (0,types_grid/* isInside */.FK)(grid, x, y) ? (0,types_grid/* getColor */.oU)(grid, x, y) : 0;
|
||||
const clearCleanColoredLayer_setEmptySafe = (grid, x, y) => {
|
||||
if ((0,types_grid/* isInside */.FK)(grid, x, y))
|
||||
(0,types_grid/* setColorEmpty */.l$)(grid, x, y);
|
||||
};
|
||||
const clearCleanColoredLayer_isEmptySafe = (grid, x, y) => !(0,types_grid/* isInside */.FK)(grid, x, y) && (0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(grid, x, y));
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/getBestRoute.ts
|
||||
|
||||
|
||||
|
||||
|
||||
const getBestRoute = (grid0, snake0) => {
|
||||
const grid = (0,types_grid/* copyGrid */.mi)(grid0);
|
||||
const outside = createOutside(grid);
|
||||
const chain = [snake0];
|
||||
for (const color of extractColors(grid)) {
|
||||
if (color > 1)
|
||||
chain.unshift(...clearResidualColoredLayer(grid, outside, chain[0], color));
|
||||
chain.unshift(...clearCleanColoredLayer(grid, outside, chain[0], color));
|
||||
}
|
||||
return chain.reverse();
|
||||
};
|
||||
const extractColors = (grid) => {
|
||||
// @ts-ignore
|
||||
let maxColor = Math.max(...grid.data);
|
||||
return Array.from({ length: maxColor }, (_, i) => (i + 1));
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ../types/__fixtures__/snake.ts
|
||||
|
||||
const create = (length) => (0,types_snake/* createSnakeFromCells */.yS)(Array.from({ length }, (_, i) => ({ x: i, y: -1 })));
|
||||
const snake1 = create(1);
|
||||
const snake3 = create(3);
|
||||
const snake4 = create(4);
|
||||
const snake5 = create(5);
|
||||
const snake9 = create(9);
|
||||
|
||||
;// CONCATENATED MODULE: ../solver/getPathToPose.ts
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const getPathToPose_isEmptySafe = (grid, x, y) => !(0,types_grid/* isInside */.FK)(grid, x, y) || (0,types_grid/* isEmpty */.Im)((0,types_grid/* getColor */.oU)(grid, x, y));
|
||||
const getPathToPose = (snake0, target, grid) => {
|
||||
if ((0,types_snake/* snakeEquals */.sW)(snake0, target))
|
||||
return [];
|
||||
const targetCells = (0,types_snake/* snakeToCells */.HU)(target).reverse();
|
||||
const snakeN = (0,types_snake/* getSnakeLength */.T$)(snake0);
|
||||
const box = {
|
||||
min: {
|
||||
x: Math.min((0,types_snake/* getHeadX */.tN)(snake0), (0,types_snake/* getHeadX */.tN)(target)) - snakeN - 1,
|
||||
y: Math.min((0,types_snake/* getHeadY */.Ap)(snake0), (0,types_snake/* getHeadY */.Ap)(target)) - snakeN - 1,
|
||||
},
|
||||
max: {
|
||||
x: Math.max((0,types_snake/* getHeadX */.tN)(snake0), (0,types_snake/* getHeadX */.tN)(target)) + snakeN + 1,
|
||||
y: Math.max((0,types_snake/* getHeadY */.Ap)(snake0), (0,types_snake/* getHeadY */.Ap)(target)) + snakeN + 1,
|
||||
},
|
||||
};
|
||||
const [t0, ...forbidden] = targetCells;
|
||||
forbidden.slice(0, 3);
|
||||
const openList = [{ snake: snake0, w: 0 }];
|
||||
const closeList = [];
|
||||
while (openList.length) {
|
||||
const o = openList.shift();
|
||||
const x = (0,types_snake/* getHeadX */.tN)(o.snake);
|
||||
const y = (0,types_snake/* getHeadY */.Ap)(o.snake);
|
||||
if (x === t0.x && y === t0.y) {
|
||||
const path = [];
|
||||
let e = o;
|
||||
while (e) {
|
||||
path.push(e.snake);
|
||||
e = e.parent;
|
||||
}
|
||||
path.unshift(...getTunnelPath(path[0], targetCells));
|
||||
path.pop();
|
||||
path.reverse();
|
||||
return path;
|
||||
}
|
||||
for (let i = 0; i < around4.length; i++) {
|
||||
const { x: dx, y: dy } = around4[i];
|
||||
const nx = x + dx;
|
||||
const ny = y + dy;
|
||||
if (!(0,types_snake/* snakeWillSelfCollide */.J)(o.snake, dx, dy) &&
|
||||
(!grid || getPathToPose_isEmptySafe(grid, nx, ny)) &&
|
||||
(grid
|
||||
? (0,types_grid/* isInsideLarge */.Yd)(grid, 2, nx, ny)
|
||||
: box.min.x <= nx &&
|
||||
nx <= box.max.x &&
|
||||
box.min.y <= ny &&
|
||||
ny <= box.max.y) &&
|
||||
!forbidden.some((p) => p.x === nx && p.y === ny)) {
|
||||
const snake = (0,types_snake/* nextSnake */.Sc)(o.snake, dx, dy);
|
||||
if (!closeList.some((s) => (0,types_snake/* snakeEquals */.sW)(snake, s))) {
|
||||
const w = o.w + 1;
|
||||
const h = Math.abs(nx - x) + Math.abs(ny - y);
|
||||
const f = w + h;
|
||||
sortPush(openList, { f, w, snake, parent: o }, (a, b) => a.f - b.f);
|
||||
closeList.push(snake);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
;// CONCATENATED MODULE: ./generateContributionSnake.ts
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const generateContributionSnake = async (userName, outputs, options) => {
|
||||
console.log("🎣 fetching github user contribution");
|
||||
const cells = await getGithubUserContribution(userName, options);
|
||||
const grid = userContributionToGrid(cells);
|
||||
const snake = snake4;
|
||||
console.log("📡 computing best route");
|
||||
const chain = getBestRoute(grid, snake);
|
||||
chain.push(...getPathToPose(chain.slice(-1)[0], snake));
|
||||
return Promise.all(outputs.map(async (out, i) => {
|
||||
if (!out)
|
||||
return;
|
||||
const { format, drawOptions, animationOptions } = out;
|
||||
switch (format) {
|
||||
case "svg": {
|
||||
console.log(`🖌 creating svg (outputs[${i}])`);
|
||||
const { createSvg } = await __webpack_require__.e(/* import() */ 578).then(__webpack_require__.bind(__webpack_require__, 4578));
|
||||
return createSvg(grid, cells, chain, drawOptions, animationOptions);
|
||||
}
|
||||
case "gif": {
|
||||
console.log(`📹 creating gif (outputs[${i}])`);
|
||||
const { createGif } = await Promise.all(/* import() */[__webpack_require__.e(155), __webpack_require__.e(642)]).then(__webpack_require__.bind(__webpack_require__, 3642));
|
||||
return await createGif(grid, cells, chain, drawOptions, animationOptions);
|
||||
}
|
||||
}
|
||||
}));
|
||||
};
|
||||
|
||||
|
||||
/***/ }),
|
||||
|
||||
/***/ 105:
|
||||
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
|
||||
|
||||
/* harmony export */ __webpack_require__.d(__webpack_exports__, {
|
||||
/* harmony export */ FK: () => (/* binding */ isInside),
|
||||
/* harmony export */ Im: () => (/* binding */ isEmpty),
|
||||
/* harmony export */ Kb: () => (/* binding */ createEmptyGrid),
|
||||
/* harmony export */ Yd: () => (/* binding */ isInsideLarge),
|
||||
/* harmony export */ l$: () => (/* binding */ setColorEmpty),
|
||||
/* harmony export */ mi: () => (/* binding */ copyGrid),
|
||||
/* harmony export */ oU: () => (/* binding */ getColor),
|
||||
/* harmony export */ wW: () => (/* binding */ setColor)
|
||||
/* harmony export */ });
|
||||
/* unused harmony exports isGridEmpty, gridEquals */
|
||||
const isInside = (grid, x, y) => x >= 0 && y >= 0 && x < grid.width && y < grid.height;
|
||||
const isInsideLarge = (grid, m, x, y) => x >= -m && y >= -m && x < grid.width + m && y < grid.height + m;
|
||||
const copyGrid = ({ width, height, data }) => ({
|
||||
width,
|
||||
height,
|
||||
data: Uint8Array.from(data),
|
||||
});
|
||||
const getIndex = (grid, x, y) => x * grid.height + y;
|
||||
const getColor = (grid, x, y) => grid.data[getIndex(grid, x, y)];
|
||||
const isEmpty = (color) => color === 0;
|
||||
const setColor = (grid, x, y, color) => {
|
||||
grid.data[getIndex(grid, x, y)] = color || 0;
|
||||
};
|
||||
const setColorEmpty = (grid, x, y) => {
|
||||
setColor(grid, x, y, 0);
|
||||
};
|
||||
/**
|
||||
* return true if the grid is empty
|
||||
*/
|
||||
const isGridEmpty = (grid) => grid.data.every((x) => x === 0);
|
||||
const gridEquals = (a, b) => a.data.every((_, i) => a.data[i] === b.data[i]);
|
||||
const createEmptyGrid = (width, height) => ({
|
||||
width,
|
||||
height,
|
||||
data: new Uint8Array(width * height),
|
||||
});
|
||||
|
||||
|
||||
/***/ }),
|
||||
|
||||
/***/ 777:
|
||||
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
|
||||
|
||||
/* harmony export */ __webpack_require__.d(__webpack_exports__, {
|
||||
/* harmony export */ Ap: () => (/* binding */ getHeadY),
|
||||
/* harmony export */ HU: () => (/* binding */ snakeToCells),
|
||||
/* harmony export */ J: () => (/* binding */ snakeWillSelfCollide),
|
||||
/* harmony export */ Sc: () => (/* binding */ nextSnake),
|
||||
/* harmony export */ T$: () => (/* binding */ getSnakeLength),
|
||||
/* harmony export */ sW: () => (/* binding */ snakeEquals),
|
||||
/* harmony export */ tN: () => (/* binding */ getHeadX),
|
||||
/* harmony export */ yS: () => (/* binding */ createSnakeFromCells)
|
||||
/* harmony export */ });
|
||||
/* unused harmony export copySnake */
|
||||
const getHeadX = (snake) => snake[0] - 2;
|
||||
const getHeadY = (snake) => snake[1] - 2;
|
||||
const getSnakeLength = (snake) => snake.length / 2;
|
||||
const copySnake = (snake) => snake.slice();
|
||||
const snakeEquals = (a, b) => {
|
||||
for (let i = 0; i < a.length; i++)
|
||||
if (a[i] !== b[i])
|
||||
return false;
|
||||
return true;
|
||||
};
|
||||
/**
|
||||
* return a copy of the next snake, considering that dx, dy is the direction
|
||||
*/
|
||||
const nextSnake = (snake, dx, dy) => {
|
||||
const copy = new Uint8Array(snake.length);
|
||||
for (let i = 2; i < snake.length; i++)
|
||||
copy[i] = snake[i - 2];
|
||||
copy[0] = snake[0] + dx;
|
||||
copy[1] = snake[1] + dy;
|
||||
return copy;
|
||||
};
|
||||
/**
|
||||
* return true if the next snake will collide with itself
|
||||
*/
|
||||
const snakeWillSelfCollide = (snake, dx, dy) => {
|
||||
const nx = snake[0] + dx;
|
||||
const ny = snake[1] + dy;
|
||||
for (let i = 2; i < snake.length - 2; i += 2)
|
||||
if (snake[i + 0] === nx && snake[i + 1] === ny)
|
||||
return true;
|
||||
return false;
|
||||
};
|
||||
const snakeToCells = (snake) => Array.from({ length: snake.length / 2 }, (_, i) => ({
|
||||
x: snake[i * 2 + 0] - 2,
|
||||
y: snake[i * 2 + 1] - 2,
|
||||
}));
|
||||
const createSnakeFromCells = (points) => {
|
||||
const snake = new Uint8Array(points.length * 2);
|
||||
for (let i = points.length; i--;) {
|
||||
snake[i * 2 + 0] = points[i].x + 2;
|
||||
snake[i * 2 + 1] = points[i].y + 2;
|
||||
}
|
||||
return snake;
|
||||
};
|
||||
|
||||
|
||||
/***/ })
|
||||
|
||||
};
|
||||
;
|
||||
Reference in New Issue
Block a user