mirror of
https://github.com/2394425147/astrodx.git
synced 2026-02-05 16:17:28 +08:00
Upload core-dump files
This commit is contained in:
102
core-dump/Scripts/NativeLinearRegression.cs
Normal file
102
core-dump/Scripts/NativeLinearRegression.cs
Normal file
@@ -0,0 +1,102 @@
|
||||
using System;
|
||||
using Unity.Burst;
|
||||
using Unity.Collections;
|
||||
using Unity.Jobs;
|
||||
using Unity.Mathematics;
|
||||
|
||||
namespace Timing
|
||||
{
|
||||
public sealed class NativeLinearRegression : IDisposable
|
||||
{
|
||||
public int SampleCount { get; private set; }
|
||||
public int MaxSampleCount { get; }
|
||||
|
||||
private NativeArray<double2> _samples;
|
||||
|
||||
public NativeLinearRegression(int maxSampleCount = 12)
|
||||
{
|
||||
MaxSampleCount = maxSampleCount;
|
||||
_samples = new NativeArray<double2>(maxSampleCount, Allocator.Persistent);
|
||||
}
|
||||
|
||||
public void Sample(double2 plot)
|
||||
{
|
||||
if (SampleCount < MaxSampleCount)
|
||||
SampleCount++;
|
||||
else
|
||||
for (var i = 1; i < SampleCount; i++)
|
||||
_samples[i - 1] = _samples[i];
|
||||
|
||||
_samples[SampleCount - 1] = plot;
|
||||
}
|
||||
|
||||
public double Predict(in double x)
|
||||
{
|
||||
using var result = new NativeArray<double>(2, Allocator.TempJob);
|
||||
|
||||
var jobData = new LinearRegressionJob
|
||||
{
|
||||
samples = _samples.Slice(0, SampleCount),
|
||||
yInterceptAndSlope = result
|
||||
};
|
||||
|
||||
jobData.Schedule().Complete();
|
||||
|
||||
var yIntercept = result[0];
|
||||
var slope = result[1];
|
||||
|
||||
return x * slope + yIntercept;
|
||||
}
|
||||
|
||||
public void Clear()
|
||||
{
|
||||
SampleCount = 0;
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
_samples.Dispose();
|
||||
}
|
||||
}
|
||||
|
||||
[BurstCompile]
|
||||
public struct LinearRegressionJob : IJob
|
||||
{
|
||||
[ReadOnly]
|
||||
public NativeSlice<double2> samples;
|
||||
|
||||
[WriteOnly]
|
||||
public NativeArray<double> yInterceptAndSlope;
|
||||
|
||||
public void Execute()
|
||||
{
|
||||
double sumOfX = 0;
|
||||
double sumOfY = 0;
|
||||
double sumOfXSq = 0;
|
||||
double sumCoDeviates = 0;
|
||||
|
||||
var sampleCount = samples.Length;
|
||||
|
||||
for (var i = 0; i < sampleCount; i++)
|
||||
{
|
||||
var plot = samples[i];
|
||||
sumCoDeviates += plot.x * plot.y;
|
||||
sumOfX += plot.x;
|
||||
sumOfY += plot.y;
|
||||
sumOfXSq += plot.x * plot.x;
|
||||
}
|
||||
|
||||
var ssX = sumOfXSq - sumOfX * sumOfX / sampleCount;
|
||||
var sCo = sumCoDeviates - sumOfX * sumOfY / sampleCount;
|
||||
|
||||
var meanX = sumOfX / sampleCount;
|
||||
var meanY = sumOfY / sampleCount;
|
||||
|
||||
// y-intercept
|
||||
yInterceptAndSlope[0] = meanY - sCo / ssX * meanX;
|
||||
|
||||
// slope
|
||||
yInterceptAndSlope[1] = sCo / ssX;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user